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ABSTRACT

This thesis explores the use of an artificial physics framework to provide centralized con-
trol of a collection of agents in close proximity to a human operator. Based on the spa-
tial separation between agents, agents to way-point, and agents to operator, the artificial
physics framework calculates virtual forces that are summed and translated into velocity
commands. The virtual forces are modeled after real physical forces such as gravitational
and Coulomb, forces but are not restricted to them, for example, the force magnitude may
not be proportional to one divided by separation distance squared. These virtual forces
allow the collection of agents, or the swarm, to autonomously find the operator, create a
formation, and navigate way-points. The operator has high-level control of the agents via
a hand held-controller. This framework is applicable to a scenario where an operator in the
field needs to work with several autonomous vehicles but is unable to devote a high-level
of focus to controlling agent behavior. We implemented an artificial physics framework
in two simulation environments and in physical indoor experiments with a team of three
unmanned aerial vehicles. The results from the physical experiments show that an artificial
physics-based framework is an effective way to allow multiple agents to follow a human

operator inside a small arena with only minimal operator input.
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CHAPTER 1.

Introduction

1.1 Motivation

The role of unmanned aerial vehicles in warfare continues to increase as the cost and tech-
nical burdens associated with these platforms decrease. According to Gertler’s 2012 U.S.
Unmanned Aerial Systems report to Congress [1], the Department of Defense (DOD) un-
manned aircraft inventory from 2002 to 2010 increased by more than a factor of 40. Current
DOD unmanned aerial vehicle (UAV) programs of record are mainly focused on procuring
highly equipped platforms adapted to support many different mission sets. This approach
has led to serious cost concerns for programs that were once considered low-cost replace-

ments for their manned counterparts [1].

Outside of the military, the last decade has seen a drastic rise in the number of commercially
available unmanned systems to perform tasks ranging from underwater weld inspection to
home cleaning. One very interesting civil development in this field is the rise of the UAV
home hobbyist. Now, for as little as a few hundred dollars, someone with basic electronics
and programming knowledge can adapt a “toy” UAV, such as the Parrot AR.Drone, to per-
form sophisticated tasks like flying way points, video surveillance, and object avoidance.
Hobbyists and researchers are able to tap into vast amounts of open source code, algo-
rithms, and applications that make customizing UAV behavior even easier. Through the
internet, many disparate universities, research labs, and individuals can easily collaborate

“crowd-source” solutions to complicated UAV problems.

A potential alternative to the Department of Defense’s high-cost, high-capability UAV strat-
egy is to focus on developing large numbers of low-cost, low-capability platforms that op-
erate in theater simultaneously and cooperatively. These platforms would be able to self
organize into a swarm, communicate, and navigate with a high degree of autonomy. Each
individual within the swarm can operate based on a simple rule set. When these individuals
interact with each other, complicated collective behaviors can arise. In nature, ant colonies

are a prime example of this. Although each ant appears to be operating on its own, the



ant colony as a whole is highly organized [2]. In the study of swarm systems, the terms
organization and emergence are used to describe the nature of the collective behavior. “Or-
ganization” refers to the increase in order or structure of the collective, and “emergence”
is when new collective behaviors, patterns, or properties arise as a result of interactions
between individuals [3]. If one or several platforms malfunctioned or were lost, the swarm
would reorganize and carry on the mission. Swarm behavior could be controlled by a
human operator or a small team of operators at a distant base station or while embedded

among the UAV on mission.

1.2 Objectives

There is a resurgence of swarm behavior research due to advances in vehicle navigation,
communications, and processing abilities. For individual platforms to function together as
a cohesive swarm, a framework for sharing information must be established for platforms
to act on this information in support of mission goals. This framework is ideally scalable
to allow for coordination between few or many UAVs and compatible with many different

types of unmanned vehicles.

Because it is unlikely, at least in the near future, that large swarms will be operating com-
pletely autonomously, it is important to determine the most effective way for human opera-
tors to control swarm behavior and receive information about the environment. One goal of
this area of research is to balance vehicle autonomy with the amount of required operator

input. The benefits of maximizing autonomy include:

e Reduced required number of operators
e Minimized operator fatigue

e Quicker response times to environmental stimuli

Some possible problems with increased autonomy are reduced fault tolerance, the inability
to plan for all variables encountered in the environment, and inability to adapt or create

new behavior patterns as the problem changes.

This thesis addresses the problem operator-UAV interaction in the field with many quadro-
tors. In addition to simulation data, experimental data was collected in a controlled physical

environment. The scenario approximates a soldier on patrol in a hostile environment who



is attempting to detect and localize threats. One goal is to design and implement an in-
tegrated system so that the UAVs take off as a group and self-organize into a formation
around the user. As the operator moves through the environment, the drones dynamically
maintain proper distance from the operator and each other. During the evolution the drones
will actively scan the area for threats using the onboard sensors. If a threat is detected, the

swarm will alert the user via a hand-held device.

1.2.1 Simulation

Simulation is a popular method for testing frameworks and examining swarm behavior.
This method allows the researcher to make small changes to algorithms and rule sets and
immediately collect data on swarm behavior. More importantly, this allows the tester to
bypass all the logistical details associated with actually operating robots in a physical en-
vironment such as charging batteries, establishing communications links, and positioning
vehicles. Despite the advantages of simulation, testing in a physical environment is re-
quired to validate rule sets and observe how the vehicles react to variables not considered
in the simulation. This thesis uses simulation to test the artificial physics framework prior

to implementing the designed framework on physical robots.

1.2.2 Human Swarm Robot Interaction

Determining the most efficient way for an operator to control a swarm of UAVs is a subset
of swarm UAV research that is still in its infancy. One must consider how much autonomy
the vehicles should have versus how much user interaction is required. Minimizing the
amount of required operator interaction reduces the number of necessary personnel and
allows the operator to focus on other facets of the mission. This thesis attempts to advance
the area of human swarm robot interaction (HSRI) by allowing the operator to control
some aspects of swarm behavior using a hand-held controller while standing among the
agents. Part of our study is to create an algorithm that allows several drones to find a
human operator and create a formation around him or her with little or no input given by

the operator, see Figure 1.1.

1.2.3 Questions

Some research questions explored in this thesis include:



Figure 1.1: One goal of our research is to allow a group of UAVs to autonomosly create a
formation around a human operator.

1. What rule sets must be employed to allow the swarm to form a formation, move, and
avoid obstacles while not colliding with the operator or fellow vehicles?
2. What is the most efficient way for an operator to control swarm behavior in the field?

3. How will the swarm provide the user with information about the environment?

1.3 Benefits of the Study

This study provides insight into a proposed efficient method to balance UAV autonomy
and operator interaction while in the field. The framework used in this experiment could
be extended to UAVs operating in the outdoors using global positioning system data for
position in lieu of a motion capture camera system. It also paves the way for creating al-
gorithms to allow for more complicated behavioral control of the swarm such as directing
an attack or having the swarm perform tactical reconnaissance on the path ahead. Coor-
dinated swarms of conventional off-the-shelf quadrotor UAVs could be a powerful force
multiplier in the expeditionary sensor grid while being much more cost-effective than ex-
isting high-end UAV programs of record. Although data taken from a single unit may be
inconsequential, when aggregated with data from many other swarm members, a higher
level of battlespace awareness is achievable. In summary, this study helps to understand
the link between micro agent level behavior to macro behavior of the entire swarm while

in the presence of human operators.

1.4 Thesis Organization
The next chapter reviews similar work on swarm robot control while highlighting some of
the frameworks used to control multiple robots simultaneously. Chapter 2 also introduces

physicomimetics or artificial physics (AP) on which the robot control framework developed



in this thesis is based. In Chapter 3, the various systems that make up the experimental
design and their integration are discussed. Chapter 4 presents results and analysis from
several experimental scenarios. Conclusions, recommendations, and future work are in
Chapter 5. Bold font is used to represent vector notation, and hatted vectors denote unit

vectors.
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CHAPTER 2:
Related Work

The focus of this thesis is to explore the concept of an operator controlling many au-
tonomous UAVs while physically located among them. These UAVs need to operate in a
framework that is scalable, fault-tolerant, and inexpensive while demanding minimal direct
control by the human operator. Over the past several decades, many different frameworks

have been explored using simulation and physical experimentation.

Typically, robot swarm behavior is based on interactions between each member of the
swarm and each member and its environment [4]. In swarm robotics literature, the words
“microscopic” and “macroscopic” are used to differentiate agent level and swarm level
behavior, respectively [S]-[7]. At the microscopic level, robots have limited knowledge
through their sensors about the world around them. Nominally, at this level, changes in the
perceived environment elicit very simple responses, e.g., if my left bump sensor detects a
collision, turn right. At the macroscopic level, swarms can exhibit behaviors such as explo-
ration, foraging, and flocking. Linking micro to macro behavior is the main task of swarm

robotics.

2.1 Potential Field Method

One way to control robot behavior at the micro level is with a potential field method (PFM).
Using artificial attractive and repulsive potentials to control unmanned vehicles in a swarm
is not a new concept. This approach was initially applied to control a manipulator arm in a
fixed environment with several obstacles [8]. The manipulator is repulsed by obstacles and
attracted to targets. A simple algorithm calculates the potential energy function, U (x,y),
based on the separation distances to environmental boundaries, obstacles, and the target.
Because force is proportional to the gradient of the potential energy function, Equation 2.1

allows us to calculate the force vector.

F(x,y,z) = —VU(x,y,z) 2.1)



The forces vector is converted to a desired change in velocity by Equation 2.2 where At is

the amount time per update cycle and m is the virtual mass of the robot.

F(x,y,z)At
m

Av = (2.2)

After this calculation, Av is converted to a control signal to the robot’s motors. This allows
for basic path planning by choosing the path with the steepest gradient ultimately leading
to a the position where potential energy is minimized. This simple, but elegant framework,
now known as the PFM, is applied to many different problem sets because it is quick to
implement and usually yields acceptable results [9]. Figure 2.1 depicts a typical potential

field scheme for navigating a robot towards a target way point.

Figure 2.1: A potential field created by an attractive target, from [10]. The agent is programmed
to move in the direction with the greatest drop in potential energy until it reaches the target
which has the lowest potential energy.

2.1.1 Problems with PFM

PFM is not perfect; there are at least four problem areas as discussed by Koren et al. [9].
The first, and the most referenced trouble area, is the creation of trap situations due to local
minima in the potential field [8]. This problem arises when the robot finds itself in a dead-
end, which can easily arise by nearing, e.g., a U-shaped obstacles or environment boundary.

One possible remedy to this issue is global path planning [11]. Global path planning allows



the robot to identify that it is in a potential well trap and determine the best route to escape
the trap and continue towards the goal. A second limitation is the frequent inability to
travel between two obstacles even though they have sufficient physical separation that the
robot should be able to pass through. This limitation can make it difficult for unmanned
vehicles to travel through doorways or enter hallways. A solution to this problem is to
carefully tune the relative magnitudes of the target and obstacle forces. A third limitation is
oscillations in the presence of obstacles. Unstable motion can result as the vehicle travels
alongside an obstacle, especially if there is a discontinuity in an otherwise smooth surface.
A fourth problem is unstable oscillations while traversing a narrow corridor. While in a
narrow corridor, the robot is repulsed by both sides. If the robot detects a discontinuity
in the corridor, frequently the vehicle will start oscillating rapidly and eventually have a

collision.

2.1.2 Examples of Swarm Robot Experimentation using PFM

Multiple research groups successfully use PFM-based frameworks to control groups of
robots. For example, Barnes et al. created a framework for both simulation and physical
experiment involving groups of four and ten robots involved in a convoy protection scenario
[12]. This approach used potential fields calculated using distance from the convoy vehicle,
distances between robots, and a minimal number of weighting parameters. This method for
multi-robot has commonly been used in robotics competitions such as the RoboCup Robot
Soccer League [13], [14]. As discussed in [13], potential fields are calculated based on
the layout of the playing field and the objects in the field. These fields determine the
destinations and actions of each of the robot soccer players.

2.2 Physicomimetics

A physicomimetics, aslo known as AP, based framework can be used to control behavior
for a whole swarm of unmanned vehicles. This framework is one of several varieties of
PFM-related approaches. Physicomimetics introduces artificial forces that are converted
to velocity commands for unmanned vehicles. The forces are usually calculated based
on a robots distance from other robots, obstacles, and way points. Artificial forces are
calculated at run-time vice calculating potential fields in advance, then later converting the

fields into forces. Figure 2.2 shows how the physicomimetics framework comprises the



outer control loop, which feeds velocity commands to the inner robot control loop, which
translates these commands into motor and servo actuation. When this framework is applied
to multiple vehicles, the robot group can self-create a formation in a similar fashion to how
intra-molecular forces cause a crystal lattice to form [15]. The formation that the vehicles
form will nominally be the one with the lowest potential energy. An additional friction
force is usually added for stability. The mathematical basis for physicomimetis or AP is

given in Chapter 3.

Physicometics is a widely implemented framework because of its adaptability and intuitive
approach. In [16], artificial forces are based on solid, liquid, and gas particle interactions,
which translate to different types of swarm behavior. Although usually applied to holo-
nomic vehicles, physicometics is also useful for controlling nonholonomic vehicles such
as fixed wing aircraft [17]. This is accomplished by adding nonlinear constraints, such as
treating the agent as a collection of particles vice a single particle and adding the concept of
torque. This approach was tested in a fixed wing swarm UAV plume detection simulation
in [18] with favorable results. Apker et al. went on to test a physicometics-based frame-
work in a four-robot auditory scene monitoring scenario [19]. In his experiments, Apker et
al. uses the four-wheeled Pioneer3-AT ground robot, which requires modifications to the
artificial physics algorithm to account for the platform being a very poor approximation of
a point particle. In [19], four robots traverse a cluttered environment and autonomously

create a diamond formation once at an attractive goal way point.

Environment
Information

v i Plant (the robot) i
1 )
] )
+ Control ' o [
Physicomimetic Algorithm —Actuators—| Velocity Position : >
I 3 :_____________________ [
Inner Loop
Outer Loop

Figure 2.2: Relationship between a robot's control system and a physicometics-based framework,
from [20].
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There are many challenges for taking a physicometics implementation that works in sim-
ulation and applying it to physical unmanned systems. Apker and Potter [20] give several

recommendations for making this transition.

2.3 Human Swarm Robot Interaction

HSRI is a previously neglected, but now fast-growing, facet of swarm research. For swarms
of fairly unsophisticated robots to exhibit sophisticated group behavior, a human operator
needs to inject guidance and extract information from the swarm [21]. The operator needs
to be able to insert domain knowledge without needing to control individual robots. In [21],
the operator controls the swarm by taking control of an individual robot or small groups of
robots. The user directs the individual or small group towards an objective and the swarm
follows on their own. Ideally, this is accomplished through an intuitive interface, such as a

hand-held controller vice a keyboard and mouse.

Another way to control swarm behavior is to have the operator physically located among
the vehicles in the swarm. The vehicles are both attracted and repulsed by the human and
maintain a formation around him or her. This approach was applied to a firefighter search
and rescue simulation in [22] and was named the social potential field method. Although
the study did not involve real robots or human operators, it demonstrated that the social
potential field method is an effective way to develop formations, avoid obstacles, navigate,

and respond to the failure of individual vehicles.

2.4 Swarm Robot Platforms
2.4.1 Fixed Wing UAVs

Fixed wing UAVs are nonholonomic, and due to logistical and field testing constraints are
typically employed less frequently in multi-robot research. The University of Pennsylva-
nia GRASP Lab has successfully flown two fixed wing UAVs in a leader-follower way
point following scenario [23]. Massachusetts Institute of Technology uses multiple fixed
wing gasoline powered UAVs built entirely from commercial-off-the-shelf (COTS) com-
ponents to test group control algorithms [24]. Stanford University’s Dragonfly Project uses
a ground command station (GCS) developed by Boeing to test cooperative algorithms on

two fixed wing UAVs [25]. Internationally, research groups such as University of Sydny’s

11



Australian Centre for Field Robotics and the University of Porto’s Apollo project also focus
on multiple fixed wing UAV research [26] and [27]. Chung et al. at Naval Postgraduate
School (NPS) [28] set the goal to have 50 unmanned fixed wing UAVs fight 50 other fixed

wing UAVs in an outdoor environment by 2015.

2.4.2 Rotary Wing UAVs

Swarm research centered around multi-rotor UAVs has increased due to the proliferation
of relatively cheap hobby- and research-grade platforms [29]. Today, quadrotor UAVs are
an increasingly common research platforms due to their simplicity and prevalence. One
major limitation of small rotor-based UAVs is the limited payload and endurance. However,
addressing the former concern, if multiple UAVs are deployed in a cooperative fashion, it
is possible to move payloads much greater than any single UAV could handle [30]. Some
research groups, such as [31], have opted to create their own in-house custom micro UAVs.
One advantage of this approach is the ability to tailor the hardware and communications
paths to accomplish specific research goals. Like our research group, others also utilize the
Parrot AR.Drone for swarm research [32]—[34]. In most cases, the research groups only
modify or create custom software for the ground control station (GCS) and do not attempt

to modify the AR.Drone’s firmware which is closed source.
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CHAPTER 3:

Experimental Design

3.1 System Description
3.1.1 Platform

We used the Parrot AR.Drone 1.0 as our main research platform. The AR.Drone 1.0 as
shown in Figure 3.1 is a quadrotor UAV with two integrated video cameras. By varying
the relative speeds of its four blades, the drones moves with six degrees of freedom [35].
One 1300mAh after market, 11.1V LiPo powers the drone and gives approximately 13
minutes of flight time. AR.Drone 1.0 uses microelectromechanical systems (MEMs)-based
inertial measurement units to estimate pitch, roll, and yaw. These measurements are used
by the on board processor for automatic pitch, roll, and yaw stabilization. This automatic
stabilization makes the AR.Drone piloting very intuitive. Based on simple commands from
the user, the drone performs takeoff and landing without any manual control. In the absence
of a movement command, the drone automatically trims and hovers in place, even in the
presence of mild wind. The drone communicates with its controller via an ad-hoc network
setup over WiFi. Control software is available for most WiFi-capable portable devices such

as the iPad or Android-based mobile devices. From its inception, the AR.Drones were

Figure 3.1: AR.Drone 1.0, from [36]

designed to allow third-party developers and hobbyists to create custom software. Parrot
released a series of software development kits (SDKs), which simplifies writing custom
applications for controlling the drone from, e.g., a Linux desktop computer, Apple i0OS

device, or an Android device.
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3.1.2 Robot Operating System

Robot Operating System (ROS) is an open-source framework for robot applications [37]. It
functions as middleware software that provides a structured communications layer to allow
various processes and/or machines with different configurations (e.g., sensors, actuators,
programming languages) to interact [37]. ROS packages contain nodes which can send
commands, process sensor information, and communicate with other nodes. For agent
control, we used the ardrone_autonomy package [38], a ROS driver for the AR.Drone
that leverages the Parrot SDK. One critical aspect of the project is developing a framework
for the UAVs to self-organize and move as a coordinated swarm. Our AP based framework

was implemented as several nodes within a ROS package, described further in Section 3.3.

Robot Three-Dimensional Visualization Tool (RVIZ)

RVIZ is a three-dimensional (3D) visualization tool for ROS [39]. Within RVIZ, a user
can place markers that represent robots or robot components and visualize how algorithms
behave in a virtual environment before testing in the real world. RVIZ itself does not
have a physics engine or understanding of how the simulated robots work. However, RVIZ
works with the ROS tf package, which manages coordinate frame transformations (see Sec-
tion 3.1.4) and is an excellent tool for debugging reference frame dependencies. RVIZ
shows marker movement in real time, which is useful for heuristically setting gains and

parameters.

3.1.3 Indoor Positioning System via Motion Capture Cameras

We utilized the robot experimentation facilities available in the Naval Postgraduate School’s
Unmanned Systems Lab, which consists of a high-bay space equipped with a twelve-
camera Vicon motion capture system [40]. The Vicon system functions similar to how
a global positioning system (GPS) receiver works outdoors. Using Vicon, we can accu-
rately track objects in a controlled indoor environment. Figure 3.3(a) shows the space
when viewed from an adjacent stairway while Figure 3.3(b) shows what the Vicon cam-
eras look like. The Vicon coverage area footprint is approximately a 10 by 15 meters (m)
rectangle. The Vicon system uses near-infrared cameras to track reflective markers with
sub-millimeter accuracy. To track each individual drone, we affix an unique constellation
of markers to each drone’s outer shell as shown in Figure 3.4(a). The Vicon system also

tracks the human operator via a helmet which has its own unique marker constellation, see
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Figure 3.4(b). The Vicon cameras are connected to a networked receiver which sends data
to an attached computer running the Vicon software suite. Vicon software identifies and

tracks all the unique constellations that are in the Vicon space, see Figure 3.2.

Figure 3.2: Vicon motion capture software, from [41]

We used the vicon_bridge package [42] to bring data from the Vicon system into the ROS
environment. This package publishes translation and orientation data relative to the lab
reference frame for all tracked objects in the Vicon field of view. Under nominal conditions,

translation and orientation data streams at 100 Hz.

(a) AR.Drone with unique marker constellation (b) Operator helmet with unique marker con-

for Vicon identification and tracking, from [41] stellation for Vicon identification and tracking

Figure 3.4: Vicon marker constellations for object identification and tracking
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(a) View of Vicon Space (b) Motion Capture Cameras, from [41]

Figure 3.3: CAVR Unmanned Systems Vicon Space.

3.1.4 Reference Frame Management

Reference frame management is paramount to the success of any framework that attempts
to provide centralized control to multiple robots simultaneously. The speed at which the
controlling station can translate between reference frames is also vitally important. In this
thesis, each drone’s position is referenced to the lab frame through Vicon, but each drone
has its own internal reference frame to track relative positions to other drones, the human
operator, and waypoints. The ROS tf package was used for accomplishing this task. This
package provides a standardized way to track coordinate frames and transformations for an
entire system of reference frames [43]. Figure 3.5 shows the hierarchy of reference frames.
ROS tf, greatly simplifies the amount of code required for making calculations between
the world and agent reference frames and eliminates errors associated with manually coding
all the reference frame translation matrices. Typically, the tf package takes between three

and four milliseconds to lookup the transform between two reference frames.

Broadcaster: fwicon Broadcaster: jvicon
Average rate: 100 205 Hz Average rate: 100 205 Hz
Maost recent transform: 0.010 secold [Most recent transform: 0.010 sec old

Buffer length: 4.940 sec Buffer length: 4.940 sec Buffer length: 4.940 sec
Miconf/ARSENL_QUAD2/ARSENL_QUADZ fvicon/ARSENL_QUADG/ARSENL_QUADE #vicon/ARSENL_QUADS/ARSENL_QUADS

Figure 3.5: Reference frames tracked by the Vicon system, graph generated by tf

Broadcaster: fvicon
Average rate: 100.205 Hz
Maost recent transform: 0.010 sec ald

Broadcaster: fwicon
Average rate: 100 205 Hz
Maost recent transform: 0.010 sec ald

Buffer length: 4.940 sec
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3.2 Artificial Physics Algorithm

We created a AP, or physicomemetics, based framework that ingests position and orienta-
tion information for all agents and outputs velocity commands to all agents based on their
position relative to each over, way points, and the operator. The first step in this process is
to turn the Vicon position data into a set of reference frames that the tf package can uti-
lize. This reference frame data is used by a custom artificial physics node which stores the
translations in a m by n matrix where m is the row index and 7 is the column index shown in
Equation 3.1. To further clarify, if m equals one and n equals two, this cell holds the relative
reference frame information from agent two compared to agent one. Each cell contains a
quaternion ((m,n) to define a rotation and a translation vector (rm n) used to translate from
one local agent reference frame to another where i, j, k, and w are the quaternion basis
elements and X, y, and? are the 3D unit vectors. The center diagonals are zero because these

cells link one agents reference frame to its own reference frame.

0 912,712 ** q1n,T1n
921,121 0 “* qQ2n,T2n
Tm,n = . . .
3.1
dm,1,'m1 9m2:Tm2 0

qmn = am,ni + bm,nj + Cm,nk + (08

I'mn = xm,nxA +ym,n}/7\ + Zm,né

Using the translation vectors from Equation 3.1, we calculate the distance, d, ,, between
each agent in the x — y plane using Equation 3.2, and store these data in a matrix given by
Equation 3.3. Similarly, distances between each agent and waypoint as well as between

each agent and the embedded human operator are calculated and stored.

dm,n = \/xyzmn +y%w (3.2)

0 dip - dip
d 0 - d,

Dpy= 2_’1 o 2 (3.3)
dml dm,2 0



Using the distances stored in the matrix shown in Equation 3.3, Equation 3.4 calculates the
artificial force, denoted Fagent, felt by agent m due to agent n, where M is the virtual mass
of each AR.drone, p, and G are constants. We set M to one for all agents, but this number
could be increased or decreased to give an agent more or less influence over its peers.
If the separation distance is greater than the desired separation distance, Equation 3.4 is
multiplied by —1 to make the force attractive. Figure 3.6 is a graphical representation of
the virtual force magnitude as a function of distance between agents. Structuring the virtual
force in this way causes the agents to move towards each other until they reach their desired
separation distance. At this distance, they begin to repel each other. Overall, this interaction
causes the agents to maintain the desired separation distance. Using the distances between
each agent and the operator (d;, 0p), Equation 3.6 calculates the artificial force (Foperator)
felt by agent m due to the operator, where p and C are constants, while the distance between
the drone and operator is less than twice the desired separation distance. If the separation
distance is greater than the desired separation distance between the operator and the agent,
Equation 3.5 is multiplied by -1 to make the force attractive, see Equation 3.6. If the
distance between the operator and the agent is greater than twice the desired separation
distance, Equation 3.7 is used to calculate Foperator. This decreases the amount of time it

takes the drones to find the operator if they are initially far away.

GMM

Fagent = —(dm,n)p I'mn (3.4)
cCM |
F operator — mrm,op where dm7op < dyesired (3.5)
m,op
—CM |
Foperator = Wrm,op where dgesired < dm,op < 2dyesired (3.6)
m,op
Foperator =—-CM dm.,opf'm,op where dm,op > 2desired (3.7)

Figure 3.7 shows force felt by the agent as a function of separation distance from the op-
erator. The force profile is designed to allow the agent to quickly close distance to the
operator and maintain the desired separation. Using the distances between each agent and
the current way point, that is, dy,,p, Equation 3.8 calculates the artificial force, Fyaypoint.

felt by agent m due to the current way point where B is a proportionality constant. Unlike
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Figure 3.6: Virtual force magnitude felt by agent m due to agent n (G =2.2, p =2.0), after [15]

the virtual forces due to the operator and other agents, the force felt due to the way point is
always attractive. Figure 3.8 is a graphical representation of the virtual force magnitude as

a function of distance between agent and way point.

Fwaypoint =-B (dm,wp)f'm,waypoint (3.8)

In Equation 3.9, the force vectors are summed to give a net resultant force vector.

n

Fm7net = Fwaypoint + Foperator + Z F agent (3'9)
i=1

From Fpet we calculate the velocity vector v using Equation 3.10

o Fm,netAt

Vi M + Vim,0

(3.10)

where Ar is the amount of time between velocity update cycles and v,, ¢ is the velocity

vector from the previous time step. In our algorithm v,, o is reset to zero each time step.
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Figure 3.7: This curve describes the force Magnitude felt by the agent due to proximity to the
human operator (C=2.2, p=2.0)

This effectively turns off Newton’s first law of motion: “An object at rest will remain at rest
unless acted on by an unbalanced force. An object in motion continues in motion with the
same speed and in the same direction unless acted upon by an unbalanced force.” In our
framework, an object or AR.Drone must be subjected to a virtual force to move, otherwise
it stops. The motivation for this was to keep fast moving drones from leaving the Vicon
coverage area. The velocity vector is broken into its x, y, and z components which are sent
to the agents as commands. We set the parameters G, C, and B such that commanded drone
speed would be below 0.3 meters per second (m/s) based on the size of the arena and the

maximum separations possible.

3.3 System Integration

Running a simple AP experiment involves multiple components working together. Fig-
ure 3.9 shows a simplified system architecture. The Vicon camera system and attached
computer detect and track objects inside the Vicon space. This information is made avail-

able on a server stack. The controlling station is typically a Linux-based laptop running
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Figure 3.8: This curve describes the force magnitude felt by the agent due to proximity to the
current way point (B = 2.2). Unlike the other two force magnitude relationships, force magnitude
due to distance from way point is linear.

Ubuntu 12.04, ROS version Groovy, and Python version 4.6.3. The controlling station runs
all the ROS nodes for the experiment and controls each of the drones through the server’s

attached wireless router.

3.3.1 Drone Communication

Out of the box, the AR.Drones are not designed to have multiple drones connected to
one controller. To overcome this limitation and to control all the agents from one station,
NPS researcher Michael Clement [44] created an automated WiFi scanning tool to enable
telnet access into each detected drone and connect it to a wireless router connected to a
server under a predefined IP address scheme shown in Table 3.1. By default, the drones
are set to use the same user datagram protocol (UDP) network ports. This led us to create
a UDP remapping tool to allow one computer to control all the drones. An explanation of
how Clement’s multiple AR.Drone communications mapping is available at [44]. Both the

controlling station and the Vicon system are connected to the drone server via ethernet. This
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Figure 3.9: Hardware architecture consists of the integration of a Vicon camera system, multiple
AR.Drones, a wireless network, and a computer functioning as a GCS

allows the controlling station to send commands to the drones and receive Vicon data using
one network adapter, as illustrated in Figure 3.9. We created a ROS node called SwarmLoad
to scan the server for connected drones and attempt to load the ardrone_autonomy driver
for each drone. We also created a custom graphical user interface to perform group takeoff,
landing, and emergency reset and to monitor battery levels, see Figure 3.11. The vicon
bridge node gives the controlling station the positions and orientations of all the agents in
the arena as well as the position and orientation of the operator. Once the UAVs are flying,

the operator can start the custom AP node. Typically, either the way point force coefficient

Side Number | ROS namespace Wireless ID IP Address
01 Quadl ardrone_197467 | 192.168.0.101
02 Quad2 ardrone_198504 | 192.168.0.102
03 Quad3 ardrone_258674 | 192.168.0.103
04 Quad4 ardrone_256959 | 192.168.0.104
05 Quad5 ardrone_266111 | 192.168.0.105
06 Quad6 ardrone_266678 | 192.168.0.106
07 Quad7 ardrone_198307 | 192.168.0.107
08 Quad8 ardrone_150853 | 192.168.0.108

Table 3.1: lIdentifiers for each AR.Drone in the swarm, from [41]. This table connects and
identifies each drone with a hull number, ROS namespace identifier, SSID (Wireless ID), and IP
number.

22



or the operator force coefficient are set to zero. This either places the experiment in operator

follow mode or way point follow mode, respectively.

3.3.2 Software Architecture
Figure 3.10 shows the software architecture for agent tracking, receiving commands from
the graphical user interface (GUI) and the hand-held controller, implemented on a Nintendo

Wiimote (see Section 3.3.3), and sending commands to the agents.

| vicon/diver |

| vicon/ARSENL_QUAD1/... I—

| vicon/ARSENL_QUAD2/... I—

DronelList

Quadl/cmd_vel
Quadl

Quad2

Quadl/ardrone/navdata

| vicon/ARSENL_QUADM/... I—

drone_tf broadcaster
wp_tf broadcaster

Legend: —> Connected by topic
ROS TOPIC ROS NODE — = —=> Connected by tf

— - — > Connected by parameter

Figure 3.10: Simplified view of software architecture, for a more complete software architecture
see (Appendix A

)

SwarmLoad. py

SwarmLoad.py is an executable Python script that scans the Vicon server for connected
AR.Drones. The script pings each drone’s network IP address based on the known IP ad-
dress scheme, as defined in Table 3.1. If there is less than 100% packet loss (meaning
positive communication with the drone is achieved), the script attempts to start an instance

of the AR.Drone driver. SwarmLoad.py provides a set of parameters to each driver that
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control: port addressing; video transmission rate; maximum altitude; minimum altitude;
and altitude sonar pinger frequency. The AR.Drone has two sonar pinger frequencies avail-
able. If multiple drones use the same frequency, then interference is likely, which results
in altitude control problems. Swarmload.py addresses this limitation by alternating the
pinger frequencies. For example drone one will operate using frequency A, drone two will
operate on frequency B, but because there are only two frequencies available, drone three
will also operate on frequency A. After starting an instance of AR.Drone driver for each
connected drone, Swarmload.py transmits a list of the drones using a ROS topic called
DroneList. This topic informs the other nodes in the software architecture how many and

which AR.Drones are involved in the experiment.

AP Algorithm

At the core of the software architecture is the AP_Algorithm node. This node takes in tf
reference frame data from the wp_tf_broadcaster and drone_tf_broadcaster nodes.
Using this data, the node calculates forces as outlined in Section 3.2. These forces are
converted to velocities which are published to each of the ardrone_driver nodes using

the cmd_vel topic.

Vicon

The vicon_bridge node publishes to a topic for each drone in the arena
(vicon\ARSENLQUAD#\ARSENLQUAD# where # is the drone’s identification number) and to
a topic associated with the operator (vicon\diver\diver. These topics contain position
and orientation data. Position is given in the form of a translation vector and orientation
is represented by a quaternion. These data are converted into tf reference frames by the

drone_tf_broadcaster node.

3.3.3 Human Swarm Robot Interaction

A user also has basic takeoff, land, and emergency reset control of the drones via a custom
graphical user interface (GUI), as illustrated in Figure 3.11. The push buttons are config-
ured to send Takeoff, Land, and Emergency Reset commands to the selected drones,
indicated by checked boxes. For example, when the Takeoff button is pressed and ac-
tivated, the GUI publishes a message to the Quad#\ardrone\takeoff (where # is the

drone’s identification number) topics for each drone with a checked box. After the drones
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takeoff, the Drone Status for each drone changes from Landed to Flying based on in-
formation received from the Quad#\ardrone\navdata topics. In a similar fashion, the
GUI receives battery charge information from the Quad#\ardrone\navdata topics and

displays the percentages in the window.

Figure 3.11: Custom GUI for basic group control of drones

In order to give the human operator some basic control over the swarm, a Nintendo Wi-
imote controller is integrated into the experiment. Wiimote controller state is monitored
using the open source ROS wiimote package [45]. The Wiimote gives the operator the
ability to collectively order swarm takeoff, landing, or emergency reset. It also gives the
operator the ability to turn on and off the AP node by changing a ROS parameter used by
the AP_Algorithm node. When the AP node is off, the drones go into hover mode. The
“1” and “2” buttons respectively increase and decrease G, that is, the constant associated
with the force felt by the drone due to the operator given in Equations 3.6 and 3.7. This
interaction further allows the operator to heuristically tune and set this parameter. Eventu-
ally, the Wiimote is envisioned to also give the operator the ability to take manual control
of individual drones and fly them traditionally, as necessitated by the mission of interest.

The current implementation of the Wiimote button mapping is shown in Figure 3.12.
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Figure 3.12: Nintendo Wiimote button mapping (manual control move left, right, forward, back-
ward not yet implemented)
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CHAPTER 4

Results

4.1 Simulation

We created two simulation environments to test and gain familiarity with our AP based
framework. The first environment consists of a simple two-dimensional (2D) playing field
with point particles. For the second, we used a 3D environment, with agent orientation
taken into account, and used RVIZ to visualize in real time the creation of the swarm

formation lattice.

4.1.1 2D Simulations

For the simple 2D simulation, we adapted a simulation program from Spears [15]. It con-
sists of a simple 2D playing field with a set number of point particle agents where each
is given an initial random positions. For simulation visualization we used the popular
matplotlib library [46]. Each time step the agents move a set amount based on their
proximity to all the other agents. After hundreds of time steps, the agents self organize into
a lattice as seen in Figure 4.1 with four agents and in Figure 4.2 with 25 agents. 2D sim-
ulation results were consistent with [15] which shows after thousands of time steps agents

will create an organized hexagonal lattice (see Figure 4.3).

4.1.2 3D Simulations

We also created a more advanced three dimensional simulation using RVIZ for ROS [39].
In this simulation, the agents have orientation, and the forces are translated into the agent
reference frames, see Figure 4.4. Once again, consistent with [15], the agents self-organize
into a lattice after several thousand time steps. In the 3D simulation, there is no attempt to
control drone altitude. All virtual forces and velocity commands are calculated in the xy
plane so the lattice formation that appears is a 2D lattice similar to the results of the 2D
simulations. We were able to later leverage this RVIZ code for real-time flight playback in
RVIZ, which helped with troubleshooting the AP algorithm, see Figure 4.5.
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Figure 4.1: Simple 2D simulation involving four agents

4.1.3 Simulation Discussion

These simulations validated the AP based framework and demonstrated that, given enough
time steps, a group consisting of a few to many agents could self-organize into a lattice by
responding to AP based virtual forces. One metric for evaluating the performance of the
algorithm is the amount of time it takes for all agents to position themselves at the desired
separation distance from their neighbors. In the three dimensional RVIZ-based simulation,
convergence typically took between two to three thousand time steps, or 20 to 30 sec, for
the average separation distance between four agents to approach the desired separation

distance of 1.25 m as seen in Figure 4.6.

4.2 Physical Experimentation Results

Our research group encountered multiple challenges during implemention of the frame-
work on the actual AR.Drones. These challenges included networking, Vicon operating
system compatibility issues, tf implementation problems, and drone altitude sonar pinger

interference to name several hurdles. Eventually, we implemented the AP framework on
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Figure 4.2: Simple 2D simulation involving 25 agents

Figure 4.3: Simple simulation run by Spears involving many agents and thousands of time steps,
after [15]

three drones alongside a human operator with a Wiimote controller, as shown in Figure 4.7.
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Figure 4.4: Screen Capture of AP algorithm controlling four simulated drones using robot 3D
visualization tool, RVIZ, for ROS

4.2.1 AP Framework Drone Trajectories

Figure 4.8(a) shows xy plane trajectories for a typical experimental run involving three
drones and one human operator. In this run, the operator stayed as stationary as possible
(operator translation < 4 cm as measured by Vicon) and the drones started several meters
away in arbitrary positions and orientations relative to the operator. The coefficient associ-
ated with way point attraction, B from Equation 3.8, was set to zero so that the drones were
only affected by other drones and the operator. After 12 seconds, all drones are within
20% separation error compared to desired separation from the operator which correlates
to all drones being within 25 cm of their desired position, see Figure 4.8(b). Figure 4.9
represents a snapshot of drone and operator positions with artificial force vectors superim-
posed. These artificial force vectors represent the force vector summations for each drone.
For example, the blue vector for drone 2 represents the summation of the following forces:
attraction to the operator, attraction to drone 5, and attraction to drone 6 (as previously
stated the parameter associated with way point attraction was set to zero so no attraction
was felt toward the way point). Drone 2 is outside the desired separation distance to drone
5, drone 6, and the operator. Because of this, its force vector points approximately towards
the operator because of the relative positions of the drones and the higher force magnitude

parameter associated with operator attraction. A similar explanation could be made for
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Figure 4.5: Screen capture of flight data playback using RVIZ. The red sphere shows opera-
tor location, red arrows indicate drone foward facing camera orientation, and the blue arrows
represent the virtual force vectors.

drone 5’s force vector. Drone 6 is within the desired separation distance of the operator
which generates a strong repulsive force which is decreased due to drone 6’s attraction to
drone 2 and 5. Section 4.2.2 goes into greater detail on how these artificial force vectors

change over time for each drone.

Figure 4.10(a) depicts the same run but several seconds later when the operator is walking
in an approximately straight line. The drones are initially able to stay within 50% sep-
aration error compared to desired separation from the operator which correlates to being
within 63 cm of the desired position, but after the operator stopped the drones had difficulty
regaining the correct separation distance, see Figure 4.10(b). One possible explanation for
this is that we did not collect enough data and that given more time the drones would have
formed a tighter formation. Unfortunately, at 22 sec into the run the operator started mov-
ing again so the data does not exist to show that a tighter formation would have formed. It
is also possible that system latency was higher during this part of the experiment and force
calculations were being performed on position data that was not current. As discussed
in Section 4.2.3, this experimental setup warranted further study of how operator position

perturbations affect the drones’ ability to reform into a lattice formation.
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Figure 4.6: Average separation versus time with four drones for 3D RVIZ simulation (Desired
Separation = 1.25, G =2700, w = 1.0, p =2.0, Ar = 0.01)

4.2.2 Artificial Force Vector Evolution

To further illustrate how the force vectors evolve over time, Figure 4.11 depicts drone
position with drone force vectors superimposed over a six second time period. During
this time period, the drone start in arbitrary positions, but after six seconds end up in an
approximate lattice shape. After six seconds, the force vector magnitudes are much smaller
than at the beginning of the experiment. This is because the repulsive and attractive forces
are summing to a number near zero. Having a force vector magnitude near zero when in
tight formation is desirable, because it minimizes the amplitude of oscillations, thereby
decreasing the probability of a collision. Note that because of the difference between the
parameters C and G, the vectors may not appear to have the correct direction or magnitude.
We re-checked our results by having the AP algorithm output intermediate results to the
operator’s console, which we compared to hand calculations performed using raw data from
Vicon. Our manual calculations were consistent with the intermediate and final results.
This demonstrates that the AP algorithm was correctly implemented and that there were
not code problems involving reference frame transformations or force calculations. If we
had picked different force parameters, the magnitudes and directions of the resultant force

vectors would be different.

The operator was able to walk around the Vicon space while the drones followed and re-

formed a lattice shape around the operator when he stopped. Latency in the system and
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Figure 4.7: Human operator wearing Vicon marker helmet controlling three agents using Wiimote
hand-held controller

imposed velocity constraints made it so the operator could escape the formation center by
walking briskly. We also conducted experiments without the operator where the drones
were given a set of way points to navigate but did not perform rigorous data collection on
these experiments. Initial observations showed that when the a new way point was inserted,
the drone would break formation, travel to the new way point, and recreate a lattice for-
mation. We need to collect data from these way point experiments as further discussed in
Chapter 5.

4.2.3 Additional Experiments

We ran additional experiments to examine the amount of time required after an operator
position perturbation for the drones to regain desired separation. Figure 4.12 depicts the
results of this experiment, and Figure 4.13 shows time-lapse photographs of the operator’s
position relative to the drones. The operator took a brisk one meter step in the x-direction,
stayed stationary for seven seconds, and then took a brisk step to return himself to his

original position. Error in average separation distance grew during and after the initial step
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input displacement, but returned to within 25% of the desired separation distance after the
perturbation was over. This experimental run exhibited a higher error in error in desired
separation distance compared to the run described in Section 4.2.1. Again, this may be
attributable to system latency increasing with time. It could also be due to slightly larger
operator position perturbations when the operator was trying to stand still (10 cm vs. 4 cm

as measured by Vicon).

4.2.4 Physical Results Discussion

Our framework was effective at autonomously organizing a group of AR.Drones in arbi-
trary starting positions and orientations around a human operator. The drones were fairly
consistent in finding the operator and creating a formation. Even with a moving operator,
the drones would follow and reform into a formation after the operator stopped. Despite
these initial positive results, drone on drone collisions were not uncommon. It appears that
latency in the system sometimes allows drones to get too close to each other. Once the
drones are within approximately 0.5 m of each other, rotor blade wash frequently causes
instability. Sometimes the drones recover, but other times the wash leads to a collision and
one or both drones crash into the ground. AR.Drones are built with the home hobbyist in
mind and are built to withstand multiple crashes. We frequently had to glue back on the

Vicon constellation marker balls due to them falling off after a crash.
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(a) xy trajectories for three drones with stationary operator

(b) Average separation distance from operator over time with stationary operator

Figure 4.8: Experimental results for three drones with a stationary operator (Desired Separation
= 1.25 m, way point parameter B = (, agent to agent parameter C = 2.2, agent to operator
parameter G = 3.1, distance exponent parameter p = 2.0, time duration per time step At = 0.03

)
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Figure 4.9: Drone and operator positions with artificial force vectors
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(a) xy trajectories for three drones with moving operator

(b) Average separation distance from operator over time with initially moving then
stationary operator

Figure 4.10: Experimental results for three drones with an initially moving then stationary opera-
tor (Desired Separation = 1.25 m, way point parameter B =0, agent to agent parameter C =2.2,
agent to operator parameter G = 3.1, distanc%%xponent parameter p = 2.0, time duration per

time step At =0.03 s)



Figure 4.11: Evolution of Force Vectors over a six second time period with stationary operator.
Overtime, force vectors change direction and magnitude as the geometry of the experiment
changes. After the six seconds shown, the drones are in a stable formation with separation
distances from the operator within 20% of the desired value (Desired Separation = 1.25 m,

B=0,C=32,G=22,p=20,Atr=0.03s)
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Figure 4.12: Graphs show operator discplacement in the x and y directions as a function of time.
In this experiment, the operator took a one m step in the positive x direction, stood still for sevon
sec, and took a step in the negative x direction to return to the origin. During the experiment,
average drone to operator separation was plotted as function of time. While the operator is
moving, average separation distance increases as the drones attempt to recreate the formation.
After the operator returns to the origin and stops moving, average separation distance approaches
the desired separation distance as the formation is recreated (Desired Separation =1.25 m, B=0,
C=32,G=22, p=2.0, At =0.03s).
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(a) t =10 sec

(b) t = 14 sec
(c)t= 18 sec
(d) t =23 sec
(e) t =25 sec

Figure 4.13: Operator and drone photographs for numerical results depicted in Figure 4.12. As
the operator took a step forward the drones followed and attempted to recreate a formation.
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CHAPTER 5:

Conclusion and Future Work

5.1 Conclusion

We validated our framework using both 2D and 3D simulations and successfully applied it
to a group of drones which allowed them to follow a human operator inside an instrumented
space. Other than initiating their collective launch with a takeoff command to the drones,
no further human input was required for the drones to find and follow the operator, based
on data from the indoor motion capture system. Experimental results showed that after
operator movement, it would typically take between five to ten sec for the drones to form
into a stable formation. A hand-held controller gave the operator the ability to takeoff and
land the drones, as well as to change the coefficients associated with drone to operator

attraction or repulsion forces.

In addition to the development and demonstration of the presented artificial physics-based

framework, the following items highlight various contributions accomplished in this thesis:

e Development of real-time simulations in 2D and 3D environments

e Design and software implementation of SwarmLoad.py utility for automation of
AR.Drone driver loading for multiple drones on the GCS computer

e Design and development of a dashboard GUI for basic AR.Drone group control and
monitoring

e Testing and development of code for Wiimote hand-held controller integration

e Closed-loop integration and documentation of motion capture system with Robot
Operating System-based software architecture

e Experimental dataset generation of multi-drone flight data for further playback and

analysis

As noted in Chapter 2, there has been little prior research involving multiple UAV intention-
ally operating in close proximity to a human operator, although there is increasing interest
in this topic. This thesis offers a possible approach for allowing humans and UAVs to safely

work together in a constrained environment.
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5.2 Recommendations
Given this emerging area of research, there are numerous avenues for immediate activ-
ities that will enhance further near-term developments for studying interactions between

multiple drones and their operator(s).

5.2.1 Definition of Relevant Performance Metrics

This work highlighted the need to develop more rigorous metrics of performance for swarm
behaviors. Tracking deviation from desired separation distance from the operator is only
sufficient for assessment of a small numbers of drones. For example, if there are more
than six drones, due to the nature of hexagonal lattices, there will be one drone between
the seventh drone and the operator. This means that by nature of the AP algorithm, not all
drones may be able to approach the desired separation distance from the operator. However,

all drones should be able to reach the desired separation distance from all other drones.

As discussed by Spears [15], one method for evaluating formation quality is to average the
error in the expected angle between agents within the formation lattice. This method would
have to be modified for our purposes due to the possible differences in the constants C and
G. One would have to do a force balance problem to calculate what the theoretical angles

should be. This process could be automated and compared to physical experimental data.

Further, one is left asking if a five-to-ten second interval is good or bad amount of time
for three drones to locate and converge on the operator, which likely will depend on the
operator interaction necessary for a given mission or application. Spears does not address
the time required to form the lattice into consideration as a performance metric. However,
for our purposes, due to practical considerations such as battery life and a dynamically
moving operator, convergence time to get into position is important. As such, future metrics
need to take into account both time and lattice quality. Additional characterizations of
swarm performance are likely to yield new research directions as well, as swarm algorithms

are developed to address these objectives.

5.2.2 Additional Experiments
There are many follow-on experiments that would illuminate additional insights. One near-

term experiment to be conducted should include one in which the coefficients associated

42



with drone-to-drone force and drone-to-operator force, G and C from Equation 3.4 and
Equation 3.6, respectively, are varied incrementally to find the set of coefficients that min-
imize collisions and time required to find and create a formation around the operator. In-
crementally changing the desired separation distance should also be explored. Another
potential experiment that warrants data collection and analysis is an experiment designed
to further test the way point attraction that is already built into the AP algorithm. Data
should be collected both with an operator present and without an operator present. Addi-
tional functionality should be added that allows the drones to follow way points and avoid

collision with the operator without attraction to the operator like under normal operation.

5.2.3 Continued Hand-held Controller and GUI Integration

The Wiimote is a good basic hand-held controller for basic drone group control. However,
for more sophisticated interactions, its functionality should be extended to include a critical
assessment of usability, i.e., what are the most useful button mappings. Specifically, further
enhancements are required to the code that allows the user to take manual control of drones
one at a time. Such modifications would reduce the amount of time required to set up trials
and could lead to more interesting experiments where some drones are acting autonomously
and some are under manual control. Another extension includes improving the GUI to have
additional functionality such as point-and-click manual drone control, way point setting,
and control over the constants used to calculate virtual force magnitudes. RVIZ is a good
candidate for point-and-click manual control and way point setting. There exist built-in
software libraries that allow for interactive markers in RVIZ, such that, e.g., a mouse click

on a RVIZ screen could be translated into a command to move to a new position.

5.2.4 Altitude Control Issue Resolution

As previously discussed when multiple AR.Drones are in close proximity, there are fre-
quent, sometime large (> 4 m), altitude excursions. We hypothesize that these excursions
are due to pinger interference from the ultrasonic range sensing altimeter. Further experi-
ments need to be conducted to verify this hypothesis and characterize this interference. If
this is indeed the source of the problem, we need to examine if there is a software solution.
This could require attempting modifications to the AR.Drone 1.0 firmware and altering the
inner-loop altitude control feedback loop. Ideally, for indoor flight, altitude control feed-

back could come solely from Vicon, but would require software setting modifications to
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enable circumventing the built-in altimeter.

5.2.5 Integration of AR.Drone 2.0

We collected all of our data using the AR Drone 1.0. Additional experiments should uti-
lize the Advanced Robotic Systems Engineering Laboratory (ARSENL) AR Drone 2.0
fleet. Switching platforms may help with inner-loop altitude control issues and would al-
low longer flight times. The 2.0 Power Edition drones come with 1600 mAh batteries and
can operate for approximately 18 minutes [35]. Longer flight times would greatly decrease
the amount of time required to run repeated experiments and could enable the performance

of more complicated mission based testing.

A laptop running Ubuntu 12.04 LTS with an Intel Core 15 processor and 1.9 GB of RAM
was the main computer used for drone control and data logging. Upgrading to a more
powerful machine could enable running experiments with more than three drones. Using
several computers to comprise the GCS could also increase our ability to fly more drones
simultaneously by splitting up processing tasks between the machines. We could connect
these machines via a ROS network [47]. A ROS network allows multiple machines to
share access to the same ROS topics. For example, one computer would be responsible for
ingesting Vicon data and doing tf reference frame transformations. A second computer

would use these transformations to calculate and transmit velocity commands to the drones.

5.2.6 Exception Handling

As currently coded, the AP node is not very robust. There is little or no logic for handling
situations, for example, where an agent or operator leaves the Vicon coverage area. When
this happens, the program currently fails and the drones continue to execute the last received
command, which is usually not desirable. Of general applicability, there exists a need to
develop code to command the drones back into the arena when they cross the boundary of
the Vicon coverage area. One possible way to accomplish this is through dead reckoning.
Dead reckoning could be used to estimate the drones position and orientation based on its
received velocity commands and last good Vicon position and orientation measurement.
Using the dead reckoned position, an algorithm could send new velocity commands to the
agent to bring it back into Vicon coverage. Dead reckoned position would also update the

AP node and could be used for calculating forces for other agents.
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5.3 Future Work
5.3.1 Outdoor Flight

Currently, the Federal Aviation Administration (FAA), for civilian aircraft, and Naval
Air Systems Command (NAVAIR), for Navy-owned platforms, place restrictions on UAV
testing for research and development purposes. As of the publication of this thesis, the
AR.Drone is not cleared for outdoor flight testing by Navy institutions. Assuming the
AR.Drone does eventually receive an interim flight clearance, the next step in our research
is to take the drones outside of the Vicon space and run the same experiments using GPS in a
controlled outdoor environment. Parrot produces a GPS receiver for the AR.Drone 2.0 (see
Figure 5.1). Note, however, that GPS is not yet implemented in the ardrone_autonomy
ROS package. Future outdoor research would necessitate adapting this package to process
and transmit GPS information via the WiFi connection. Taking the experiments outdoors

would afford us the space to test the AP framework using more agents.

Figure 5.1: The Parrot Flight Recorder for the AR.Drone 2.0 has an on-board GPS, from [48].

5.3.2 Adding More Agents

Our research usually involves three or fewer AR.Drones with one human operator. Ex-
ceeding three agents with one controlling station appeared to result in too much latency
for a satisfactory level of control. It is unclear if the latency is due to network bandwidth,
controlling station processing limitations, tf algorithm limitations, or the Vicon motion
capturing system. Using a controlling station with more processing power in conjunction

with running a network packet monitoring program such as Wireshark could help identify
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the bottleneck. As discussed in Section 3.3.2, sonar pinger interference is another major
limiting factor in piloting multiple AR.Drones in a small arena. It may be necessary to

modify the drone’s firmware to remove pinger data from the altitude control algorithms.

5.3.3 Tag Detection and Computer Vision

The AR.Drone 1.0 is equipped with two cameras. Using its own onboard processing power,
the drone is able to detect the presence and relative position of special colored tags. The raw
drone video feed can also be analyzed using tools like OpenCV to perform tasks such as
localization, collision prevention, and threat detection. Future research should leverage the
existing hardware on the drones and incorporate open source programs such as OpenCV.

Incorporating tag detection and computer vision will help enable mission-based testing.

5.3.4 Mission-Based Testing

Part of the motivation for this project was to show that a group of drones could be useful
in the field for following a group of operators and alerting them to threats. We need to
design experiments that allow us to work up to this goal. Such experiments will leverage
the drone’s camera sensors and will need to be conducted outdoors due to space constraints
in the existing NPS Vicon space. The computer or computers that comprise the GCS should

be further designed so that an operator could carry them in a backpack.
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APPENDIX A:
ROS Software Architecture

ROS node connection graph generated using rqt_graph [49]
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